人工智能学术速递[2021.5.13]
获取含摘要速递,更有收藏、搜索等功能,涵盖CS|物理|数学|经济|统计|金融|生物|电气领域
同步公众号:arXiv每日学术速递,欢迎关注cs.AI人工智能,共计26篇
【1】 The Greedy and Recursive Search for Morphological Productivity
标题:形态生产力的贪婪递归搜索
作者:Caleb Belth,Sarah Payne,Deniz Beser,Jordan Kodner,Charles Yang
机构:Department of Computer Science and Engineering, University of Michigan, Department of Linguistics and Department of Computer and Information Science, University of Pennsylvania, Information Sciences Institute, University of Southern California
备注:CogSci 2021
链接:https://arxiv.org/abs/2105.05790【2】 Probabilistic Loss and its Online Characterization for Simplified Decision Making Under Uncertainty
标题:不确定条件下简化决策的概率损失及其在线表征
作者:Andrey Zhitnikov,Vadim Indelman
机构:∗Technion Autonomous Systems Program, †Department of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa , Israel
链接:https://arxiv.org/abs/2105.05789【3】 Exploring the Similarity of Representations in Model-Agnostic Meta-Learning
标题:模型不可知元学习中表征相似性的探索
作者:Thomas Goerttler,Klaus Obermayer
机构:Technische Universit¨at Berlin, Chair of Neural Information Processing, Germany, Bernstein Center for Computational Neuroscience Berlin, Germany
备注:Learning to Learn workshop at ICLR 2021
链接:https://arxiv.org/abs/2105.05757【4】 Building a Question and Answer System for News Domain
标题:构建新闻领域的问答系统
作者:Sandipan Basu,Aravind Gaddala,Pooja Chetan,Garima Tiwari,Narayana Darapaneni,Sadwik Parvathaneni,Anwesh Reddy Paduri
机构:Director – AIML, Great LearningNorthwestern, University Illinois, USA, Student – AIML, Bangalore, India, Mentor– AIML, Anwesh Reddy Paduri, Data Scientist - AIML
链接:https://arxiv.org/abs/2105.05744【5】 An Efficient Learning Framework For Federated XGBoost Using Secret Sharing And Distributed Optimization
标题:基于秘密共享和分布式优化的联邦XGBoost高效学习框架
作者:Lunchen Xie,Jiaqi Liu,Songtao Lu,Tsung-hui Chang,Qingjiang Shi
机构:Shenzhen, China
备注:24 pages, Special issue of ACM Transactions on Intelligent Systems and Technology
链接:https://arxiv.org/abs/2105.05717【6】 Acting upon Imagination: when to trust imagined trajectories in model based reinforcement learning
标题:基于想象的行动:在基于模型的强化学习中,什么时候应该信任想象的轨迹
作者:Adrian Remonda,Eduardo Veas,Granit Luzhnica
机构:Know-Center, Graz, Styria, Austria, Graz University of Technology, Graz, Styria, Austria
链接:https://arxiv.org/abs/2105.05716【7】 Representation in Dynamical Systems
标题:动力系统中的表示法
作者:Matthew Hutson
机构:Brown University, Providence, RI
备注:11 pages, 2 figures
链接:https://arxiv.org/abs/2105.05714【8】 Segmenter: Transformer for Semantic Segmentation
标题:分词:语义分词的转换器
作者:Robin Strudel,Ricardo Garcia,Ivan Laptev,Cordelia Schmid
机构:Inria†
备注:Code available at this https URL
链接:https://arxiv.org/abs/2105.05633【9】 NLP for Climate Policy: Creating a Knowledge Platform for Holistic and Effective Climate Action
标题:气候政策NLP:为全面和有效的气候行动创建知识平台
作者:Pradip Swarnakar,Ashutosh Modi
机构:Department of Humanities and Social Sciences, Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur , India
备注:12 Pages (8 + 4 pages for references)
链接:https://arxiv.org/abs/2105.05621【10】 Unsupervised Knowledge Graph Alignment by Probabilistic Reasoning and Semantic Embedding
标题:基于概率推理和语义嵌入的无监督知识图对齐
作者:Zhiyuan Qi,Ziheng Zhang,Jiaoyan Chen,Xi Chen,Yuejia Xiang,Ningyu Zhang,Yefeng Zheng
机构:Tencent Jarvis Lab, Shenzhen, China, Department of Computer Science, University of Oxford, UK, Platform and Content Group, Tencent, Shenzhen, China, Zhejiang University, Hangzhou, China
备注:Accepted by IJCAI 2021
链接:https://arxiv.org/abs/2105.05596【11】 An Appraisal Transition System for Event-driven Emotions in Agent-based Player Experience Testing
标题:基于Agent的玩家体验测试中事件驱动情绪评价转换系统
作者:Saba Gholizadeh Ansari,I. S. W. B. Prasetya,Mehdi Dastani,Frank Dignum,Gabriele Keller
机构: Ume˚a University, Ume˚a, Sweden, NOTE: This is a preprint of the article , accepted in ,th International Workshop on Engineering Multi-Agent Systems, (EMAS,), held as a part of ,th International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
备注:This is a preprint of an article with the same title, accepted in 9th International Workshop on Engineering Multi-Agent Systems (EMAS 2021) which was held as a part of 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2021)
链接:https://arxiv.org/abs/2105.05589【12】 "Alexa, what do you do for fun?" Characterizing playful requests with virtual assistants
作者:Chen Shani,Alexander Libov,Sofia Tolmach,Liane Lewin-Eytan,Yoelle Maarek,Dafna Shahaf
机构:The Hebrew University of Jerusalem, Amazon Alexa Shopping
链接:https://arxiv.org/abs/2105.05571【13】 Looking at CTR Prediction Again: Is Attention All You Need?
标题:再看CTR预测:你只需要关注吗?
作者:Yuan Cheng,Yanbo Xue
机构:Career Science Lab, BOSS Zhipin, Beijing, China
备注:9 pages, 2 figures, 4 tables, SIGIR21
链接:https://arxiv.org/abs/2105.05563【14】 Learning Uncertainty with Artificial Neural Networks for Improved Remaining Time Prediction of Business Processes
标题:改进业务流程剩余时间预测的人工神经网络学习不确定性
作者:Hans Weytjens,Jochen De Weerdt
机构:Research Centre for Information Systems Engineering (LIRIS), KU Leuven, Leuven, Belgium
备注:Accepted for the main conference at the Business Process Management Conferences 2021, 6-10 September 2021, Rome, Italy
链接:https://arxiv.org/abs/2105.05559【15】 Improving Lexically Constrained Neural Machine Translation with Source-Conditioned Masked Span Prediction
标题:源条件掩蔽跨度预测改进词汇约束神经机器翻译
作者:Gyubok Lee,Seongjun Yang,Edward Choi
机构:Graduate School of AI, KAIST
备注:To appear in ACL 2021
链接:https://arxiv.org/abs/2105.05498【16】 Interpretable performance analysis towards offline reinforcement learning: A dataset perspective
标题:基于数据集的离线强化学习的可解释性性能分析
作者:Chenyang Xi,Bo Tang,Jiajun Shen,Xinfu Liu,Feiyu Xiong,Xueying Li
机构: China 2School of Aerospace Engi-neering, Beijing Institute of Technology, China 3School ofElectrical and Computer Engineering, Purdue University
链接:https://arxiv.org/abs/2105.05473【17】 From Human-Computer Interaction to Human-AI Interaction: New Challenges and Opportunities for Enabling Human-Centered AI
标题:从人机交互到人机交互:实现以人为中心的人工智能的新挑战和新机遇
作者:Wei Xu,Marvin J. Dainoff,Liezhong Ge,Zaifeng Gao
机构:a Center for Psychological Sciences, Zhejiang University, Hangzhou, China; b Dept. of, Psychology, Miami University, Oxford, Ohio; c Zhejiang University, Department of Psychology
备注:76 pages
链接:https://arxiv.org/abs/2105.05424【18】 Could you give me a hint? Generating inference graphs for defeasible reasoning
标题:你能给我一个提示吗?生成用于可废止推理的推理图
作者:Aman Madaan,Dheeraj Rajagopal,Niket Tandon,Yiming Yang,Eduard Hovy
机构:Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA, † Allen Institute for Artificial Intelligence, Seattle, WA, USA
备注:Findings of the Association for Computational Linguistics: ACL 2021
链接:https://arxiv.org/abs/2105.05418【19】 Bayesian Model Averaging for Data Driven Decision Making when Causality is Partially Known
标题:因果关系部分已知时数据驱动决策的贝叶斯模型平均
作者:Marios Papamichalis,Abhishek Ray,Ilias Bilionis,Karthik Kannan,Rajiv Krishnamurthy
链接:https://arxiv.org/abs/2105.05395【20】 Accuracy-Privacy Trade-off in Deep Ensemble
标题:深度集成中的精度-隐私权衡
作者:Shahbaz Rezaei,Zubair Shafiq,Xin Liu
机构:University of California, Davis, CA, USA
链接:https://arxiv.org/abs/2105.05381【21】 Return-based Scaling: Yet Another Normalisation Trick for Deep RL
标题:基于回报的缩放:Deep RL的另一个归一化技巧
作者:Tom Schaul,Georg Ostrovski,Iurii Kemaev,Diana Borsa
链接:https://arxiv.org/abs/2105.05347【22】 Neuro-Symbolic Artificial Intelligence Current Trends
标题:神经符号人工智能的发展趋势
作者:Md Kamruzzaman Sarker,Lu Zhou,Aaron Eberhart,Pascal Hitzler
机构:Department of Computer Science, Kansas State University, KS, USA
备注:under review
链接:https://arxiv.org/abs/2105.05330【23】 Seeing All From a Few: Nodes Selection Using Graph Pooling for Graph Clustering
标题:从几个方面看全部:使用图池进行图聚类的节点选择
作者:Yiming Wang,Dongxia Chang,Zhiqian Fu,Yao Zhao
机构:Beijing Jiaotong University
链接:https://arxiv.org/abs/2105.05320【24】 Intelligent interactive technologies for mental health and well-being
标题:心理健康和福祉的智能互动技术
作者:Mladjan Jovanovic,Aleksandar Jevremovic,Milica Pejovic-Milovancevic
机构:rsMilica Pejovic-MilovancevicInstitute of Mental Health and Faculty of Medicine
链接:https://arxiv.org/abs/2105.05306【25】 Online POMDP Planning via Simplification
标题:基于简化的在线POMDP规划
作者:Ori Sztyglic,Vadim Indelman
机构:Department of Computer Science, Department of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa , Israel
链接:https://arxiv.org/abs/2105.05296【26】 CCN GAC Workshop: Issues with learning in biological recurrent neural networks
标题:CCN GAC研讨会:生物递归神经网络中的学习问题
作者:Luke Y. Prince,Ellen Boven,Roy Henha Eyono,Arna Ghosh,Joe Pemberton,Franz Scherr,Claudia Clopath,Rui Ponte Costa,Wolfgang Maass,Blake A. Richards,Cristina Savin,Katharina Anna Wilmes
机构:School of Computer Science, McGill University, Montreal, Canada, Mila, Montreal, Canada, Bristol Computational Neuroscience Unit, University of Bristol, United Kingdom, Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria
链接:https://arxiv.org/abs/2105.05382机器翻译,仅供参考
访问arxivdaily.com获取含摘要速递,更有收藏、搜索等功能,涵盖CS|物理|数学|经济|统计|金融|生物|电气领域
同步公众号:arXiv每日学术速递,欢迎关注本站所有文章、数据、图片均来自互联网,一切版权均归源网站或源作者所有。
如果侵犯了你的权益请来信告知我们删除。邮箱:dacesmiling@qq.com
上一篇:澳大利亚关键选区形势汇总